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Abstract

Introduction: The Hepatitis B Virus (HBV) genome contains four ORFs, S (surface), P (polymerase), C (core) and X. S is
completely overlapped by P and as a consequence the overlapping region is subject to distinctive evolutionary constraints
compared to the remainder of the genome. Specifically, a non-synonymous substitution in one coding frame may produce
a synonymous substitution in the alternative frame, suggesting a possible conflict between requirements for diversifying
and purifying forces. To examine how these contrasting requirements are balanced within this region, we investigated the
relationship amongst positive selection sites, conserved regions, epitopes and elements of protein structure to consider
how HBV balances the contrasting evolutionary pressures.

Methodology/Results: 323 HBV genotype D genome sequences were collected and analyzed to identify sites under positive
selection and highly conserved regions. Epitopes sequences were retrieved from previously published experimental studies
stored in the Immune Epitope Database. Predicted secondary structures were used to investigate the association between
structure and conservation. Entropy was used as a measure of conservation and bivariate logistic regression was used to
investigate the relationship between positive selection/conserved sites and epitope/secondary structure regions. Our results
indicate: (i) conservation in S is primarily dictated by a-helix elements in the protein structure, (ii) variable residues are
mainly located in PreS, the major hydrophilic region (MHR) and the C-terminus, (iii) epitopes in S, which are directly targeted
by the host immune system, are significantly associated with sites under positive selection.

Conclusions: The highly variable spacer domain in P, which corresponds to PreS in S, appears to act as a harbor for the
accumulation of mutations that can provide flexibility for conformational changes and responding to immune pressure.
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Introduction

Both hepatitis B virus (HBV) and hepatitis C virus (HCV) cause

persistent liver infection, but the two viruses are notably different

in terms of replication strategy and host interaction, as well as their

global impact on public health [1,2]. 170 million people are

estimated to be infected worldwide with HCV, with 70–90% of

infected individuals becoming chronically infected [3]. In contrast,

more than 350 million people are estimated to be globally infected

with HBV but more than 95% of cases will result in viral clearance

[4]. The viruses also possess strikingly different genome arrange-

ments. HCV, a member of the flaviviridae family, possesses a

positive strand RNA genome of ,9.6 Kb encoding a polyprotein

that is co- and post-translationally processed to form three

structural (core, envelope 1 (E1) and envelope 2 (E2/p7)) and six

non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A & NS5B)

[5]. HBV, on the other hand, is the smallest known DNA virus

with a genome only 3.2 kb in length. The genome comprises four

open reading frames (ORF): core (C), polymerase (P), surface (S)

and X. All four ORFs are overlapped completely or partially.

Specifically, S is encompassed entirely by P. Gene overlapping is a

common strategy adopted by many viruses to reduce their genome

size and maximize their encoding capacity. However, this

inevitably constrains the independent evolution of the individual

reading frames as a mutation with little effect on one gene may

cause severe or even fatal changes on the cognate overlapping

gene. Thus, in an overlapping region, if one gene undergoes

adaptive evolution (positive selection) with a high ratio of non-

synonymous nucleotide mutations (dn/ds .1), the cognate gene

often undergoes purifying selection (negative selection; dn/ds ,1).
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This has been observed in many different viruses such as simian

immunodeficiency virus [6], potato leaf roll virus [7] and human

papilloma virus [8].

Studies on the variation in HCV sequences indicate that E1 &

E2 (which interact with the host immune system) possess greater

variation compared to the NS5B protein, which encodes the RNA-

dependent RNA polymerase, and this disparity may reflect the

differing functional roles of these two proteins [9–11]. In HBV,

however, S and P shared an overlapping segment of DNA

sequence, raising the question of whether these proteins face

similar competing requirements and, if so, how they resolve this

apparent conflict. From a structural perspective, the HBV P

protein comprises a terminal protein (TP) domain, a reverse

transcriptase (RT) domain, an RNase H (RH) domain and a

spacer domain [12]. Of these structures, the TP, RT and RH

domains are conserved, while the spacer domain is highly variable

(for review see [13,14]). Previous genetic studies have suggested

that the spacer, which acts a tether between TP and RT, is

dispensable as it has little effect on replication competence [12,13].

The S ORF encodes three surface proteins termed large (L),

middle (M), and small (S) protein. The M protein is comprised of

the S and PreS2 domains. The L protein includes another N-

terminus genotype-dependent domain termed PreS1. PreS1 is

essential for viral entry and infection. In particular, amino acids 2–

48 act as the recognition site for a hepatocyte-specific receptor

[15]. The S protein is predicted to function as a membrane

spanning protein and contains four trans-membrane (TM) regions,

each consisting of an a-helix structure [16]. Compared with the

variable PreS domain (including PreS1 and PreS2), the TM

regions, which maintains the stability of protein structure, are

conserved [16]. However, the hydrophilic loops between the a-

helices harbor more variable amino acid residues. Moreover,

variation in epitopes may aid virus escape from the host immune

system. The T cell and B cell epitopes in the S protein (HBsAg)

targeted by the host immune system are mainly concentrated in

these loop regions, including the major hydrophilic region (MHR,

amino acids 99–160) which contains a conformational B cell

epitope cluster. In addition, the core of MHR contains the ‘‘a’’

determinant (residues 121–147) which is the region primarily

associated with induction of a protective humoral immune

response [17,18].

The selection pressure exerted by the host immune system can

be focused on the epitope regions, although this pressure varies

over the course of an HBV infection [19,20]. Specifically, the

humoral immune (B cell mediated) response to the S protein plays

a relevant role in the clearance of infectious HBV particles,

whereas cellular immune (T cell mediated) responses contribute to

the elimination of infected hepatocytes [19,21]. The studies on

immunopathogenesis of S are extensive, and hence there are large

quantities of associated epitope data. In contrast, as a consequence

of the fewer reports on both the humoral immune response and

the cytotoxic T cell (CTL) response, there are relatively less data

available on epitopes data in P [22–27]. Moreover, the higher

levels of conservation in P may restrict viral escape via mutations

in epitopes [24]. Thus, the correlation between epitope of P

protein and selection pressure is not considered in this report.

Several studies have investigated the effects of these functional

constraints in HBV [28–30]. Although sequence evolution in the

overlapped P and S regions is constrained [28], Zaaijer et al. (2007)

[29] proposed that HBV is able to use the degeneracy in the

genetic code to overcome these restraints. Due to the frame shift

between the coding regions for P and S, the first position in the P

codon corresponds to the third position in the S codon (P1S3), the

second position in the P codon corresponds to the first position in

the S codon (P2S1), and the third position in the P codon

correspond to the second position in the S codon (P3S2). Thus, a

synonymous mutation in P is able to produce a corresponding

non-synonymous mutation in S (P3S2), which can produce an

amino acid change in S but conserve the corresponding site in P,

satisfying the constraints on both genes. Furthermore, the study

found that the most of changes take place in P1S3 (P) or P3S2 (S)

and the nucleotide mutations in P2S1 are rare. In a more recent

study, negative selection was simultaneously detected in both the

overlapped P and S genes [30]. However, the dataset was

composed of a single study set of 33 patients and hence involved

analysis of a relatively small number of sequences.

In this study, we reinvestigated the overlapping P and S regions

using a dataset, significantly larger compared to previous studies

and considered how the observed variation in this region was

related to what is known about the respective functions of the two

proteins[28–30]. We examined the correlation between conserva-

tion and structured protein domains, as well as the relationship

between positive selection sites and epitope regions and consider

how these competing requirements help to shape the HBV

genome and impact the life cycle of the virus.

Materials and Methods

Data Collection and Preparation
Up to May 2012, all available full-length human HBV genome

sequences (3165) were retrieved from GenBank. All sequences

were genotyped using the software tool HBV STAR (http://www.

vgb.ucl.ac.uk/starn.shtml) [31]. To rule out the possibility of inter-

genotype recombination, only sequences that had been previously

established to be non-recombinant were used as references. All

inter-genotype recombinant sequences, sequences with ambiguous

characters (non-standard nucleotides or amino acids) were

removed. This left a final dataset containing 2236 genotyped

human HBV genome sequences (genotype A, n = 300; genotype B,

n = 604; genotype C, n = 717; genotype D, n = 323; genotype E,

n = 181; genotype F, n = 59; genotype G, n = 25; genotype H,

n = 27). Finally, the associated publications for the 323 genotype D

sequences were checked to ensure they were from drug naive

subjects who did not test positive for coinfection with other viruses

such as HIV or HCV. These 323 sequences were used in the

subsequent analysis. The known epitopes of HBV surface antigens

(L, M, S), including T cell epitopes and B cell (antibody) epitopes,

were retrieved from the immune epitope database (IEDB; http://

www.immuneepitope.org/). Background information (i.e., acces-

sion numbers and genotypes), as well as the epitope information

(epitope ID and linear sequence), are presented in Table S1 and

Table S2 respectively. The overlapped P and S sequences,

comprising amino acid and DNA sequences, were extracted from

HBV whole genome sequences, and aligned using ClustalW v2.0

(http://www.clustal.org/download/) [32]. The alignments of

DNA sequences were manually adjusted according to the amino

acids alignment by using MEGA version 5.0 (http://www.

megasoftware.net/) [33] and sequences with large alignment gaps

were removed. Both the polymerase and large surface protein of

genotype D have a deletion (11 amino acids in length) compared

with the remaining genotypes (A, B, C, E-H). This indel is highly

conserved and it has little effect on the results of the following

analyses, therefore it was treated as an alignment gap and

removed. For consistency, the large surface protein and the

corresponding P codons within the overlapping region were

numbered from 1 to 389 according to the genotype D reference

sequence reported in a previous study by Myers et al. [31]

(accession no. X65259).

Computational Analysis of Spacer Region in HBV
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Investigation of Positive Selection Pressure
Two different tools were used to investigate the positive

selection pressure. First of all, six different codon-based substitu-

tion models (M0 (one ratio (v)), M1 (neutral), M2 (positive

selection), M3 (discrete), M7 (beta) and M8 (beta & v .1)),

implemented in the Codeml program in the PAML software

package version 4.0 (http://abacus.gene.ucl.ac.uk/software/paml.

html) [34], were used to test the ratio of non-synonymous to

synonymous nucleotide substitutions (dn/ds). The likelihood ratio

test (LRT) and Bayes Empirical Bayes (BEB) [35] statistical tests

applied by PAML were used to determine the most suitable

models, following the method described in the user manual. The

multi-partition fixed effects likelihood (FEL) method implemented

in the Hyphy [36] software package on the online server (http://

www.datamonkey.org/) was then used to predict positive selection

sites.

Identification of Conserved and Highly Variable Regions
The entropy values (H0) [37] varying from 0 (100% conserved)

to 1 (all 20 amino acids present at equal frequency), as well as the

frequency of conserved residues, were used to quantify the

variation of amino acids in the overlapped P and S proteins.

The Shannon entropy (H0) of each site was calculated according to

the following equation

H0~
X20

i~1

Pi ln Pi= ln 20

where Pi is the probability of amino acid i occurring at the site

[37].

Protein Structure Modeling
The 3D structures of the P and S proteins were predicted based

on homology modeling or de novo modeling. Both the consensus

sequences of P and S were derived from the alignments of

genotype D. Using the HIV RT structure 1T05 (2.8 Å) as a

template, an initial model of HBV RT was generated using

Modeller (http://salilab.org/modeller/) [38]. Once generated, the

model was transferred to Chimera (http://www.cgl.ucsf.edu/

chimera/download.html) [39] for model refinement based on

energy minimization with an Amber99 force field. Model quality

was evaluated using PROCHECK. Due to lack of a suitable

template, the 3D model of the S protein was predicted using the

online server I-TASSER based on an algorithm consisting of

consecutive steps of threading and fragment assembly to obtain an

estimated structure with the lowest energy [40]. According to the

predicted tertiary structure, the secondary structure of the P

protein was generated using the DSSP software package (http://

swift.cmbi.ru.nl/gv/dssp/) [41], while the secondary structure of S

was predicted using the Raptox-SS8 software package (http://ttic.

uchicago.edu/,zywang/RaptorX-SS8/) [42]. In the following

analyses, amino acids located in an a-helix or b-sheet were

considered part of the structured region and the remaining

residues located in loops, coils and turns were associated with

unstructured regions.

Statistical Testing
The associations between positive selection sites and epitopes,

and between conservation and structured protein domains (a-helix

and b-sheet), were evaluated using the Fisher’s exact test based on

a series of contingency tables. The data was further investigated

using bivariate logistic regression to investigate the relationship

between positive selection/conserved sites and epitope/secondary

structure regions. All these analyses were performed in R, version

2.15.0 (http://www.r-project.org/). Full details are provided in

Table S4.

Results

Identification of Positive Selection in P and S
The six site models implemented in the PAML software package

were compared (M3 to M0, M2 to M1, and M8 to M7) by the

likelihood ratio test. For both proteins the M3 (discrete), M2

(positive), and M8 (b and v .1) models were selected (P,0.01)

(Table S3), suggesting varying selection pressure occurs at

individual sites throughout the HBV P and S overlapping region.

Using HyPhy [36], sites under positive selection were detected in

both the P and S proteins. In genotype D, 27 sites, corresponding

to 3.2% of the 832 amino acids of the full length P protein, were

found to be under positive selection; for the P and S overlapped

region 3.9% of the sites were predicted to be under positive

selection (15 sites out of 389). In the S protein, the proportion was

5.1% (20 residues). Moreover, in the S and P overlapped region,

the sites predicted to be under positive selection are not randomly

distributed throughout the defined domains. For P, 86.7 percent

(13 out of 15) of the positive selection sites are located in the spacer

domain, while the RT domain only contains two sites (13.3%).

Similarly, for S, 85% (17 out of 20) of the positive selection sites

are concentrated in PreS (6), the major hydrophilic region (MHR)

(6) and the C-terminus (5), and the remaining regions only

contained 3 sites.

To investigate whether the selection pressure acts predomi-

nantly on viral epitopes, known T cell and B cell (antibody)

epitopes, together with the sites under positive selection, were

mapped on to the protein sequence for the S gene (Figure 1). In S,

there was a significant association (p = 0.01) (Table 1B) between

epitopes and sites under positive selection in the S protein.

Prediction of Secondary and Tertiary Structures of the P
and S Proteins

In order to investigate the associations between protein

structure and positive selection, the individual secondary and

tertiary structures of S and P were modeled. Since the structures of

P and S have not been experimentally determined, we generated

3D models for both proteins based on the consensus sequences

derived from genotype D. The full alignment of the HBV RT

domain with the corresponding HIV-1 RT was consistent with

previously published estimates of the HBV RT structure [43].

Based on this alignment, a final model was generated (Figure 2A).

Consistent with the solved structure for the HIV-1 RT and other

DNA-dependent DNA polymerase (DDDP) or RNA-dependent

DNA polymerase (RDDP), the HBV RT model folds in a classic

‘‘right hand’’ shape with fingers, palm and thumb subdomains.

The finger (rt1-79 and 145–195) and thumb (290–376) subdo-

mains are mainly composed of a-helices, while the palm (80–116

and 196–289) subdomains which constitute the catalytic ‘‘core’’ of

polymerase are dominated by b-sheets and a-helices. The palm

contains the YMDD motif, which is associated with mutations

after long-term antiviral treatment with nucleoside analogues (NA)

such as Lamivudine, Entecavir. The de novo prediction for S

contains four long a-helices which are considered to constitute the

trans-membrane (TM) regions (Figure 2B, colored blue, green,

yellow and red respectively). A schematic of S based on secondary

structure and a previous published study [16] is shown in

Figure 2E. The four membrane spanning regions are termed as

TM1 (8–28), TM2 (78–100), TM3 (160–184) and TM4 (189–210)

Computational Analysis of Spacer Region in HBV
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respectively and a major loop between TM2 and TM3 in the

extracellular spacer harbors the ‘‘a’’ determinant.

Pattern of Conserved and Variable Amino Acids
The entropy and frequency of consensus amino acids were used

to estimate the degree of variability within each protein. A plot of

entropy superimposed over the sequence shows that the majority

of variable residues in S are mainly concentrated in PreS, the ‘‘a’’

determinant and the C-terminus (Figure 1). In contrast, most of

the variable residues in P are located within the spacer region and

codons 290–310 which correspond to the ‘‘a’’ determinant in S

(Figure 1, Figure 2D). If we define a site to be conserved when

more than 95% of the sequences harbor the same amino acid, we

find that 73.3% of the amino acid residues for the P protein are

conserved, whereas for S, 71.7% of the sites are conserved. If we

set the threshold value to 99%, the percent of conserved residues

Figure 1. Map of the Overlapping Region of the S and P Genes. The line at the top shows a schematic of the major components of the S and
P genes. The arrows above mark the location of the overlapping regions of the two genes. The spacer domain in P more or less corresponds to the
PreS (PreS1+ PreS2) domain in S, whereas the RT domain in P corresponds to the S domain in S. The plots below show the variation within the
overlapping region and the location of specific features for both genes. First row: Entropy plots for S (upper plot) and P (lower plot). The X-axis
denotes the codon position (1–389) and refers to the position within the overlapping region. The Y-axis denotes the entropy of the sites, with a
higher value representing a more variable codon. The location of important regions within each gene is marked above each plot. For S these are PreS,
a-determinant and four transmembrane regions TM1 to TM4. For P these are Spacer and the YMDD motif. In S, the variable residues are mainly
located in PreS, the ‘‘a’’ determinant and at the C-terminus, while the trans-membrane regions are relatively well conserved. In P, the Spacer domain
and the region corresponding to ‘‘a’’ determinant are highly variable, while the most conserved codons are locate within and near the YMDD motif.
Row 2 shows the location of highly conserved codons for S (upper plot) and P (lower plot), based on the entropy plots. Row 3 shows the location of
predicted secondary structure features (alpha helix and beta sheets) based on predicted protein structures for S (upper plot) and P (lower plot). Row 4
shows the location of epitopes within the S protein. Row 5 shows the sites predicted to be under positive selection for S (upper plot) and P (lower
plot).
doi:10.1371/journal.pone.0060098.g001
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are 62% (P) versus 55% (S). When we mapped the conserved

residues to the predicted protein structure, at a 95% consensus cut

off, 77% of the residues located in the structured regions of P were

conserved (a-helix (78% of residues conserved) and b-sheet (71%

of residues conserved)). The result of the Fisher’s exact test

(Table 1) indicated a significant restriction in sequence variability

in the a-helix domains (odd ratio (OR) = 2.83, P = 3.01e25) but a

relaxed restriction within the b-sheet domains (OR = 1.94,

P = 0.09) (Table 1A). For the S protein, the a-helix exhibited a

strong association with conservation of virus sequence (OR = 1.96,

P = 0.01), but there was no such association identified for b-sheets

(Table 1D). When the variable and conserved residues are mapped

on the 3D structures for P and S, they show different spatial

distributions. In P, the highly conserved residues cluster in the

catalytic core near the YMDD motif (Figure 2C); in contrast, the

variable residues in S are mainly located in the loops between the

long a-helices which are thought to constitute the trans-membrane

regions (Figure 2D).

Correlations among Protein Structure, Epitopes, and
Amino Acid Variability

Constraining and diversifying forces are in conflict and each

contributes to shaping a viral genome. We therefore used bivariate

logistic regression to investigate the magnitude of contributions

from both events (i.e., conservation and positive selection)

(Table 2). The results indicate that constraints occur primarily in

domains located in a-helices (OR = 1.89, p = 0.04), but no

significant association between conserved regions and epitopes

(p.0.05) is demonstrated (Table 2A). However, the Fisher’s exact

test indicates significant correlation between variable sites and T

cell and antibody epitopes (OR = 0.47, p = 0.02) (Table 1C),

implying these regions tolerate more variability. For the positive

site bivariate regression analysis the regression model is rejected

(Table 2B), but there is significantly less positive selection

occurring in a-helix domains (Figure 1). This is consistent with

the increased conservation observed in these regions. Also, we

found an increased number of residues under positive selection in

T cell and antibody epitopes which is consistent with the

significantly increased variability in these domains (Figure 1).

Discussion

Gene overlapping is a common occurrence in viruses. In this

way, a virus can minimize its genomic size, effecting a more

economical replication cycle. The trade-off is that within an

overlapping region, nucleotide substitutions may result in simul-

taneous amino acid mutations in the two distinct proteins encoded

by the same nucleotide sequence. Consequently, this restricts the

independent evolution of overlapped genes. How natural selection

acts on the different viral proteins within an overlapping region

continues to interest evolutionary biologists and virologists.

Adaptive (positive) selection in one protein contrasted by purifying

(negative) selection in the other overlapping protein has been

observed in several viruses including simian immunodeficiency

virus, potato leaf roll virus and human papilloma virus [6–8].

HBV is the infectious pathogen responsible for hepatitis B and

possesses a highly compact DNA virus with half of its genome

overlapped. The first identification of distinctive evolutionary

constraints acting on the HBV genome was reported in 1997 by

Mizokami et al. who analyzed 27 HBV strains [28]. They found a

lower rate of nonsynonymous substitutions to synonymous

substitutions (dn/ds) in the non-overlapped region compared to

the overlapped region. Subsequently, Zaaijer et al. showed the

overlapping polymerase and surface protein were undergoing

adaptive selection but proposed they were nevertheless, to a

certain degree, evolving independently [29]. Most recently, based

on a different dataset, van der Klundert et al. detected negative

selection acting on the HBV genome [30]. In this study, we

reexamined the adaptive evolution acting in the overlapping P and

S regions using a significantly larger dataset compared to earlier

studies. In addition to investigating dn/ds we also examined the

association between conserved sites and structured protein

domains, and between sites under positive selection and epitope

regions. Although the crystal structure of both proteins remains to

be determined, in this study we primarily focused on the secondary

structure which can be predicted with higher confidence (,80%)

[44–46]. Furthermore, our structure prediction for P is based on

the tertiary RT structure of the HIV RT, which contains many

regions that are well conserved between the two viruses, further

increasing the accuracy of our prediction.

As a DNA-dependent DNA polymerase (DDDP) and an RNA-

dependent DNA polymerase (RDDP), the HBV polymerase

requires sequence conservation to implement its normal catalytic

function. In particular, a highly conserved catalytic core in the

proximity of the YMDD motif is crucial for replication compe-

tence, even a single amino acid mutation may severely decrease

the catalytic activity of polymerase. Long-term antiviral treatment

with nucleoside analogues (NA) such as Lamivudine and Entecavir

often results in YMDD mutations and mutations have occasionally

been reported in Tenofovir treatment [47,48]. Although they can

tolerate antivirals, the mutants may reduce their replication

competence in comparison to the wild type virus [49]. To remove

any bias that might result from anthropogenic selection so as to

focus on investigating the evolutionary pattern under natural

selection pressure, sequences with antiviral therapy were excluded.

In the HBV P and S overlapping region, several interrelated

factors including structural, immunological and evolutionary

constraints affect relative gene domain arrangement and genetic

Table 1. Association between conservation, secondary
structure, positive selection sites and epitopes performed by
Fisher’s exact test.

OR p-value

(A) P protein (Conservation VS. 2nd structure)

a-helix 2.83 3.01e-05

b-sheet 1.94 0.09

(B) S protein (Positive selection VS. epitopes)

Infinite 0.01

(C) S protein (Variation VS. epitopes)

0.47 0.02

(D) S protein (Conservation VS 2nd structure)

a-helix 1.96 0.01

b-sheet 1.06 NS

OR: odd ratio; NS: not significant.
Association between (A) Conserved sites and secondary structure (B) sites under
positive selection and epitopes and (C) variation (entropy) and epitopes for S
protein. (D) association between Conserved sites and secondary structure for P
protein. The odds ratio provides a measure of the association between two
specified variables. For example, in (A) conserved sites have a strong association
with a-helices both in the S (OR = 1.96, P = 0.01) and the P protein (OR = 2.83,
P = 3.01e-05,0.01), a weak association with b-sheets in the P protein (OR = 1.94,
P = 0.09), but have no significant association between conserved sites and b-
sheets in the S protein, indicating the a-helices are highly conserved and the b-
sheets can accommodate more variable residues.
doi:10.1371/journal.pone.0060098.t001
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Figure 2. Predicted 3D Structures for the S and P Proteins. A) The predicted 3D model of the HBV RT based on the HIV RT structure which
folds in the classic ‘‘right hand’’ shape with fingers (blue), palm (red) and thumb (green) subdomains. The finger and thumb subdomains are primarily
composed of a-helices, whereas the palm regions mainly comprises a-helix and b-sheets. B) The predicted 3D model for S. S contains four long a-
helices which constitute the trans-membrane (TM) regions. These are colored blue (TM1), green (TM2), yellow (TM3) and brown (TM4) respectively.
These a-helices are each separated by loops and the ‘‘a’’ determinant located in the loop between TM2 and TM3. C) The spatial distribution of
conserved and variable residues in HBV RT. The highly conserved residues are colored red, the highly variable residues are colored blue, and the
remaining residues are colored white. The majority of residues are conserved. Furthermore, the most conserved residues are clustered within and
near the YMDD motif (marked as red spheres). D) The spatial distribution of conserved and variable residues in S. Red and blue indicate the most
highly conserved and most variable residues respectively, the remaining residues are colored white. The ‘‘a’’ determinant (marked with spheres with
the same colour scheme to show variability) harbors many B cell epitopes and contains many highly variable sites (blue spheres). Compared to P, the
distribution of variable sites in S appears to be more diffuse. E) Schematic of secondary structure of S. S has four membrane spanning regions (TM1–
TM4). The N-terminus, C-terminus and ‘‘a’’ determinant are located on the outer face of the membrane. Coordinates of the membrane spanning
regions are shown for inner and outer face. Top coordinate corresponds to the position within the pre-S1, coordinates in parentheses correspond to
the position within the small S.
doi:10.1371/journal.pone.0060098.g002
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variation. The requirement for maintaining structural protein

elements (a-helix and b-sheet) appears to govern the conservation

of residues and restrict the virus variation within the genome. In

particular, as a stable and important structural element, few

nonsynonymous substitutions exist in the a-helices. In contrast, the

b-sheets can accommodate more variation which is consistent with

results from an analysis of structural restraints in HIV [50].

Many sites under positive selection were detected in both genes

in this study, indicating they are both undergoing adaptive

evolution and suggesting that they each play important roles in

HBV survival. The adaptive evolution identified in S was almost

exclusively located within the epitope regions, suggesting a role

associated with evasion of host immune system. However, we

identified additional sites outside the epitopes with weaker

statistical support, that may also be associated with alternative

roles within the virus life cycle and which would warrant further

investigation. [51,52]. On the other hand, the positive selection

sites in P were mainly located in the spacer domain which

corresponds to PreS in S, suggesting that this ‘‘dispensable’’ spacer

domain may in fact be important for the HBV life cycle. For

instance, amino acid substitutions in this region may affect the

catalytic activity of the polymerase which is essential in the earliest

steps in the HBV life cycle. Furthermore, recognition of P antigens

may limit early HBV spread and its high degree of conservation

may prevent viral escape via mutations in T cell epitopes ([22,23],

see [53] for review). In addition, two studies report the discovery of

CD8+ and CD4+ T cell epitopes in the polymerase, although the

regions are less than other HBV antigens [23,24] suggesting that

the variation in P may also be associated with limited immune

escape.

While it is tempting to associate the observed correlation

between positive selection and epitopes with response to host

immune pressure as observed in HCV [10,11], it is important to

acknowledge the differences between the HBV and HCV virus life

cycles [2] as well as considering the complex interplay between

virus and host in HBV necessary for establishing a chronic

infection. Multiple factors, including immune evasion, persistence

of cccDNA and infection of immunologically privileged sites,

contribute to HBV persistence [54]. Chronic infection in HBV is

characterized by a weaker immune response [1] and production of

excess HBsAg that captures most antibodies and HBV-specific

immunosuppression play critical roles in immune evasion [55].

With regards to HBV-specific immunosuppression, from a viral

perspective, the various proteins contribute in different ways

towards achieving this modulated response. For example, HBeAg

can induce tolerance in core protein (HBcAg) specific T cells,

reducing their efficacy to kill infected cells [56,57] and the X

protein appears capable of inhibiting antigen processing and

presentation, reducing the visibility of infected cells to the immune

system [58]. Conversely, from the host perspective, a number of

factors have been proposed or demonstrated to be associated with

the inadequate cellular immune response including: deficient

antigen presentation [59], a limited range of virus-specific T cells

[60], anergy or exhaustion of rapid onset of T cell response due to

antigen overload and T cell overstimulation [61], induction of

regulatory T cells and ramping up of negative regulatory signals

such as regulatory T cell mediated immunosuppression [62].

Thus, in a chronic infection, these factors will suppress the host

immune response and, consequently, the selection pressure acting

on the virus, complicating the interpretation of our results and the

significance of our association between positive sites and epitopes.

Interpretation of our results are further confounded by the fact

that our dataset represents a broad cross-section of the HBV patient

population (comprising chronic infection, acute infection and HBV

carriers) and, as such represents an average across multiple patients

over the course of an HBV infection. Furthermore, the identified

epitope/positive selection signal superimposed over the background

noise generated by random mutations due to relaxed selection

pressures on flexible loop regions that are free of secondary structure

constraints (i.e. a-helix and b-sheet). Finally, it has been proposed

that coevolutionary relationship may exist between sites in PreS

(corresponding to spacer in P) and sites elsewhere in the genome

that are expressed as compensatory mutations. [63].

The variable region (nucleotides 1–498 in the large surface

protein reading frame) is essential both for P and S as it encodes

the spacer in the P ORF and the PreS region in the S ORF. On

one hand, this region provides the flexibility for changes in protein

conformation. In P, some residues in TP and RT are believed to

be associated with P-e binding which triggers pregenomic RNA

(pgRNA) encapsidation and DNA synthetic priming [64,65]. This

step can proceed only if the P protein changes its conformation

from the stable state to the ‘‘active’’ state in the presence of

chaperons such as hsp40 and hsp70 [66–69]. On the other hand,

in S, besides its function in viral entry and infection [70,71], the

peptide from residues 2–48 is the target sequence for the

hepatocyte-specific receptor [15]. Also, the flexibility of the Pre-

S variable region allows mobilization of this region between the

inner and outer face of the virus membrane [72,73]. This region

also has the flexibility to accumulate variation for adapting to

immune pressure. PreS harbors many T cell and B cell epitopes for

the large surface protein. Hence, adaptive evolution in this region

may play a role in HBV escape from the host immune system.

The domain arrangement in P and S further demonstrates the

compromise necessary to fulfill the distinct requirements of each

protein. The spacer domain in the polymerase (corresponding to

PreS in large surface protein) seems to have effectively balanced

the distinctive conservation and variation requirements occurring

within the overlapping region. Moreover, the four membrane-

spanning regions composed of the conserved a-helices contribute

to the stability of the S protein, while the intervening variable

major hydrophobic regions and C-terminus exposed to the outer

face of viral envelope may contribute towards helping HBV evade

attack from the host immune system.

Table 2. Bivariate logistic regression analysis for association
with (A) conservation, or (B) positive selection sites in S
protein.

Coef. Std. Err. OR p-value 95% CI

(A) Conservation (P(. x2 ) = 0.008)

X1 (a-helix+b-
sheet)

0.64 0.59 1.89 0.041 1.03–3.47

X2 (epitopes) 0.49 0.43 1.64 0.058 0.98–2.72

(B) Positive selection (P(. x2) .0.05)

X1 (a-helix+b-
sheet)

0.14 0.38 na 0.71NS na

X2 (epitopes) 16.24 887.44 na 0.98NS na

Coef: coefficient; Std. Err.: standard error; OR: odd ratio; CI: confidence interval;
NS: not significant; na: not applicable. Logistic regression analysis was carried
out with conservation as the predicted variable. (A) The estimated coefficients
suggest that the conservation is significantly associated with structural region
(a-helix+b-sheet) (Coef. = 0.64 with p = 0.041,0.5), but has no significant
association with epitopes (Coef. = 0.49 with p = 0.058.0.05). This result is
consistent with the results of Fisher’s exact test. (B) The logistic model with X1
and X2 as predictor variables is not significant due to the fact P(. x2) .0.05.
doi:10.1371/journal.pone.0060098.t002
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In conclusion, our findings indicate the spacer domain, which

corresponds to PreS in S, provides an important function by

serving as a harbor for maintaining heterogeneity for environ-

mental adaptation as well as providing flexibility for conforma-

tional changes and response to immune selective pressure.
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