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Abstract:

The theory of three-dimensional hydroelasticity for free flexible floating bodies and
the theory of mooring system analysis are integrated into a complete theoretical
framework for analyzing the dynamical response of the mooring system of a flexible
floating body. The effect of the elastic deformations of the floating body on the
mooring system analysis is investigated. The mathematical model based on the
perturbation method for the dynamic tension response analysis of the mooring
system is presented. Three-dimensional hydroelasticity theory and Goodman-Lance
method are used to solve the hydroelastic response of the floating body and dynamic
tension response of the mooring line respectively. Their coupling relationship are
also given and used to solve motion equations of the mooring lines. The theory
presented in the paper is illustrated by a numerical example. And the results show
that the elasticity of the very large floating structure has considerable effect on the
dynamic responses of the mooring system.

1. Introduction

Hydroelasticity theory of floating bodies, which embody the full complexities of
the dynamics of the structure concerned and the fluid around it, provides a more
consistent and more rational approach for the assessment of the overall behavior of a
flexible marine structure in waves. The theory has been developed for more than 20
years and in various forms such as two-dimensional theory, three-dimensional theory
and non-linear theory (Bishop and Price, 1979; Wu, 1984; Wu et al., 1997; Chen,
2001;Chen et al.,2003b). Hydroelasticity theory has been used in many fields
especially in the dynamic response analysis of very large floating structures (Ertekin
et al., 1991; Watanabe et al., 1996; Ertekin et. al., 1999; Song et.al., 2002). However,
few reports have dealt with the mooring systems. With the rigid assumption of the
floating body, Huang et al. (2001) developed a method of perturbation up to second
order in frequency domain to calculate the motion and the load of a moored floating
structure in waves. Considering the dynamic interactions, they presented the slowly
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DEEPWATER MOORING SYSTEMS 143

varying response of the structure and the dynamic characteristics of the mooring
lines. The numerical results are validated through comparison with experiments.
Ignoring the dynamic effect of the mooring lines, Chen et al. (2003b) presented the
coefficients of the restoring forces of a mooring system acting on a flexible floating
body. They presented the linear and nonlinear three-dimensional hydroelastic motion
equations of a moored floating body in frequency domain, and a moored floating
beam is presented as a numerical example. A hybrid method of frequency domain
and time domain was developed by Chen et al. (2001) to predict the motion
responses of a flexibly joint multi-body floating system in irregular waves. In this
paper, the mathematical model based on perturbation method for the dynamic
response analysis of a moored flexible floating body considering the dynamic effect
of the mooring lines is presented, and the expressions of the coupling relationship
between the motion of the floating structure and the mooring lines are also presented.

2. The Motion Equations of a Moored Flexible Floating Body

The motion equations of a moored flexible floating body can be expressed as
(Chen et al. 2001)

[a+ l{p}+[o+ B{p}+[c+ Clip}={F, }+{F,}+ {R} + {0}, 0

where[a],[b]and[c] are the generalised mass matrix, the generalised damping matrix
and the generalised stiffness matrix of structure respectively. [4], [B]and[C] are the
generalised added mass matrix, the generalised added damping matrix and the
generalised restoring matrix respectively. {p}is the generalised principal coordinate
vector. Furthermore, {F, }, {F,, },{R}and {Q} are the generalised wave exciting forces,
the generalised mooring forces, the generalised static forces and the generalised
gravity forces. For the floating body with uniformly mass distribution, the
generalised static forces are equilibrant with the generalised gravity forces. Then the
liner motion equations of a moored flexible floating body in frequency domain can
be expressed as

[—a)z[a+A]+ia)[b+B]+[c+C]]{ﬁ,}={1?:,1}+{Fm,}, )]

where @ is the incident wave circular frequency, {p’,}is the first order generalized principal
coordinate vector. {le}and {fm,} are the first order generalized wave exciting forces and the

first order generalized mooring forces. {F,,,,

(Ea}=300T {7}, - 3)

=]

can be expressed as
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144 DEEPWATER MOORING SYSTEMS

where n is the number of the mooring line, [D] is the mode vector matrix
including the rigid and elastic modes, {f, is the first order forces vector acting on
the floating body by the i-th mooring line, and { ¥ }‘ can be expressed as

fl=foooooo .. {x, %, Z, 0 00} .}, @)

where X, , Y, and Z, are the first order forces acting on the floating body in
X,Y,Z axis direction respectively induced by the i-th mooring line. In order to
simplify the expressions, two coordinate systems are introduced, namely the floating
body frame of Oxyz , and the coordinate system for mooring line, as shown in Fig.1.

According to the geometry relationship, one obtains the forces vector acting on
the floating body induced by the i-th mooring line (Fan et al., 1998)

X, =-T cosg,cos6,
Y =T cosg,sing, , &)
Zl = ]‘l Sin ¢l

where T,,p,and 6, denote the amplitudes of the tension of the i-th mooring line,
the inclination (angle between the horizontal and the tangent directions of the
mooring line) and the angle between the vertical plane mooring line located and the
vertical plane including x axis, as shown in Fig.1.

¥(v)

()

z(w)

Fig.1 Coordinate system for mooring line

For dynamic analysis of the mooring line perturbing up to the second order,
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according to equations (5), the first order dynamic forces acting on the floating body
induced by the i-th mooring line can be expressed as (Fan et al., 1998)

Xll = To: Sin ¢01 cos 001511 + TO: cos ¢01 cos 001611 _Tll cos ¢0! cosoﬂl

>~

[T —TOF Sin Po, Sin 001@‘11 + TOI cos ¢01 cosemgh + Th COS¢0, sin 00: ’ (6)

N

u = —Th sin ¢01 _TOI cos ¢01¢l/

where T,.¢, , 6, and T,,9,, 6, represent the static and the first order
perturbation components of the i -th mooring line respectively.
The principle coordinate responses of the equations (2) can be defined as

{ﬁl}={ﬁwl}+{ﬁm]}’ Q)

where {p,,} and {p,,} are the first order principle coordinate responses induced
by the first order wave exciting forces and the first order dynamic mooring forces
respectively(Fan et al., 1998). Furthermore, {5,,} can be defined as

{ﬁml } = Z {PITITI: + p]alall + p15,§l:} ] (8)
=1
where {ﬁ”—.,}, {Ea} and _15,} are the first order principle coordinate responses
induced by the first order dynamic tension7;,, the inclination@, and the angle
6_’“ respectively. Substituting equations (8) into (7), the principle coordinate responses
of the equations (2) can be rewritten as

{ﬁ1}= {ﬁw‘}“'Z{Pﬁ,Tu + PP +pl§1§"}' ®

i=l

Then, the first order perturbation displacements induced by wave exciting forces and the mooring
forces of one mooring point of the floating body can be obtained by

{0, Holz.}- (10)

3. The Motion Equations of the Mooring Line

From the 6 motion equations of the mooring line, perturbing up to the second
order, one obtains the first order motion equations of the mooring line in frequency
domain (Huang et al., 2001; Fan et al., 1998)
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- = — — — — T
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where U, W and V are the normal velocity, the tangential velocity and the
binomial velocity respectively, they are shown in Fig.1. ¢ and W, are the strain
and the unit length weight in water of the mooring line respectively. F', HandG
are the hydrodynamic force of the unit length of the mooring line
in 7 , b and f direction respectively. £ and A4 are the effective static elastic
modulus and the section area of the mooring line respectively. The subscript
s,U,U,W,p and € denote the partial derivatives with respect to these variables,
and subscript 0 and 1 denote the static and first order perturbation variabies.

The relationship between the mooring point’s velocity in the coordinate system for
mooring line and the velocity in the floating body frame (as shown in Fig.1) can be
expressed as

U, 7
7, =L kv b, (13)
w, w

with

cosf,sing, —cosg, sind,sing,
[L,,,,, ] =|cosf,cosp, sing, sinf,cosy, |-
siné, 0 cosé,

The velocity in the floating body frame can be expressed as
u
v b =in[T|D. KB, Je'* (14)
w
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where [T] is the transformation matrix of the two coordinate systems. [D, L c [D]
is the displacement mode vector matrix corresponding to the mooring point. ; is
the mode number truncated to. Substituting equation (14) into equation (13), one
obtains

S

<iolL, JTID,{p )¢ =[LTDYB, }e= (15)

Bl

Substituting equation (9) into equation (15), one obtains the coupling relationship
between the motion of the floating body and the mooring line

U, =0 + Z(Umy];/ +lew¢11 +lee; P

Vo=V + 2 OaT, +Va®, +V 56, (16)

where U,,,7,, and W,, are the first order velocity amplitudes of the mooring
point 1n three  directions mduced by the i -th mooring line.
(Unr, 5’ uq)» (V,T’ & Vig and Wz Wios né) are the fist order
velocity amplitudes of the top pomt of the i-th mooring line in three directions
induced by unit 7 ,unit @ andunit & ofthe j-th mooring line respectively.

The boundary condition of the bottom point of the i-th mooring line can be
expressed as

U, =", =w,=0. a7

1

With the whole boundary condition of equation (16) and equation (17), equation (11)
can be solved by Goodman-Lance method (Huang et al., 2001; Fan, et. al., 1998).
Then, one can obtains the variable g, ,T,,7,,U,,#,and §, at each top point of
the mooring line.

4. Numerical Example

4.1. The model
A moored pontoon-type VLFS mentioned by Chen (Chen et al., 2003a) is
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148 DEEPWATER MOORING SYSTEMS

chosen to illustrate the theory presented above. The particulars of the VLFS and the
mooring system are shown respectively in Table 1 and Table 2, and the configuration
of the mooring system is shown in Fig.2.

Table 1 Particulars of the VLFS

Length L 300.0 m
Width B 60.0 m
Depth h 2.0 m
Draught d 0.5 m
Bending rigidity &/ 477x10" Nm?
Young’s modulus  E 1.19x10% N/m?
Poisson’s ratio v 0.13

Mass density P 256.25 kg/m’

Table 2 Particulars of the mooring system

Mooring Line
No.
Direction 00 450 900 1350 1800 2250 2700 315.0
(degree)

Pretension(ton) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

No.l No.2 No3 No4 NoS5 Nobé6 No7 No8

Fig.2 Configuration of the mooring system
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4.2. Discussion of the mooring system of the flexible body

The results of the amplitudes of the dynamic tension of the mooring lines acting
on the flexible and rigid floating body are shown in Fig.3. The incident wave angle
and the wave amplitude are f=0°and ¢ =1.0m respectively.
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Fig.3 The numerical results of the dynamic amplitude of the mooring
lines’ top tension

Based on the curves shown in Fig.3, the frequency characteristics of the mooring
lines’ dynamic amplitude of top tension of a floating flexible body can be analyzed as
follows.

a. Because of the symmetry of the structure of the floating body, the wave exciting
forces and the positions of the mooring lines, the amplitudes of the top dynamic
tensions of the mooring lines are also symmetrical.

b. At the middle part of the floating body, dynamic tensions of the mooring lines
of the rigid body are almost equal to that of the flexible body, and approaches to zero
with the frequency increasing.

c. At two ends of the floating body, the dynamic tensions of the mooring lines of
the rigid body are almost equal to that of the flexible body at low wave frequency,
and the latter is greater than the former at high wave frequency, which is sometimes
6 times greater.

5. Summany and Conclusions

The theory of three-dimensional hydroelasticity for unmoored floating bodies and
the theory of mooring system analysis based on Goodman-Lance method have been
integrated into a complete theoretical framework for analyzing the dynamic response
of the mooring system of a flexible floating body. The effect of the elastic
deformations of the floating body on the mooring system analysis has been studied.
The numerical results have shown that the elastic deformations of the floating body
cannot be negligible in the dynamic tension analysis of the mooring lines when the
wave frequency is higher, but can be neglected when the wave frequency is lower.
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