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ABSTRACT: A novel target-field approach for designing bi-planar gradient and shim

coils of restricted radius for use with permanent-magnet MRI systems is presented in this

article. The method is based on identification of the weighting of harmonic components

in the current distribution that will generate a magnetic field whose z-component follows

a chosen spherical harmonic function. Mathematical expressions that relate the harmonic

terms in the surface current distribution to spherical harmonic terms in the field expan-

sion are established and then used in a simple matrix inversion approach to design a

range of shim coils. The expressions providing a spherical harmonic decomposition of

the field components produced by a particular current distribution are novel. The results

can be used to design bi-planar shim coils of restricted radius that will generate a field

variation that follows a certain spherical harmonic over a reasonably-sized volume. A

stream function was utilized to obtain the discrete wire distribution on the coil plane.

This method does not require the setting of the target-field points. Through an analysis

of the matrix equations in terms of condition numbers, we show that this novel approach

has no ill-conditioned problems. � 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part

B (Magn Reson Engineering) 37B: 29–38, 2010
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INTRODUCTION

Romeo and Hoult (1) presented a full mathematical

framework for designing shim coils on a cylindrical-

surface for MRI systems with solenoidal supercon-

ducting magnets. They used spherical harmonics to

series expand the magnetic field over a target-diame-

ter-sphere-volume (DSV) of interest (2, 3). To

improve the field homogeneity over the DSV, each

shim coil, responsible for adjusting one such har-

monic, needs to be tuned to annul the zonal or tess-

eral harmonic fields. By combining current elements

from various shapes, such as loop arcs, ellipse arcs,

etc., one can enhance the harmonic of interest and

eliminate unnecessary harmonics. Unfortunately, the

qualified volume calculated from this method is less

than the desired specification; thus, such a classical

method has limitations for advanced shim coil

design.

An alternative method to obtain considerably

larger usable volumes is the ‘‘target field’’ method

proposed by Turner (4, 5). This method has no ill-

conditioned problem because Fourier transforms

have unique inverses. In the original target-field

approach (4), there is no explicit constraint on coil

length, which may result in unnecessarily long
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coils. Therefore, to restrict the coil length, Turner

(5) improved this method by adding a constraint

that the surface current must fall to zero outside of

a finite interval. As a compromise, however, it

degrades the target-field method as discussed by

Jin (6).
For permanent-magnet MRI systems, the spatial

homogeneity over the region of interest (0.3 m DSV

in this article) needs to be controlled at the order of

1025 or smaller relative to the main magnetic field

strength B0. Brideson et al. (7) utilized target-field

and Fourier Integral methods to design bi-planar

shim and gradient coils for C-type permanent

magnets. Liu and Truwit attempted the design of bi-

planar coils of restricted radius (8). As soon as the

coil size is restricted, however, the target-field

approach leads to a Fredholm integral equation; as a

result, an ill condition exists with it. To overcome

the ill condition with the integral equation, Forbes

and Crozier used a minimization technique combined

with Tikhonov regularization to solve the surface

current on the coil plane (9, 10). The linear program-

ming algorithm for shim design (11) embodies much

flexibility for MRI systems of complex geometry.

Liu et al. (12) overcame the ill-conditioned problems

for gradient-coil design by selecting a collection of

the target-field points properly instead of using

Tikhonov regularization. However, this method

seems invalid for designing higher-order shim coils

(see ‘‘Discussion’’ section). In this article, we com-

bine the classical harmonics approach (1, 3) and the

target-field approach (4, 5, 9, 10, 12) to design bi-

planar shim coils with finite radius. To our knowl-

edge, this is the first time that the relationship

between a set of surface current coefficients (corre-

sponding to each order and each degree harmonic)

and the harmonic field coefficient itself has been

established.

THEORY

Figure 1 shows the geometry of bi-planar shim coils

and the spherical polar coordinate systems used here.

The shim coils are located at a pair of planes z 5 6
a, respectively, and the maximum radii are qa;
~rðr; u;/Þ is the field point in the imaging volume and

~r 0ðf ;a;wÞ is one source point on the coil planes.

The shim coil may be idealized to be on two paral-

lel planes on which a surface current ~Jðq;wÞ is

flowing. The surface current in polar coordinates

system is expressed as ~J ¼ Jwêw þ Jqêq. The vector

êw denotes the unit vector in the w-direction, with a

similar notation applying for the other unit basis

vectors. The components Jq and Jw satisfy the

steady-state continuity equation @
@q ðqJqÞ þ @Jw

@w ¼ 0.

It follows at once from the continuity equation that

the two components of the surface current on the

coil planes can be expressed in terms of a single

stream function Sðq;wÞ according to the relations

Jq ¼ @S

q@w
; Jw ¼ � @S

@q
: [1]

For the bi-planar shim coils, z ¼ �a ¼ f cosa,
and q ¼ f sina (see Fig. 1). The stream function

can be set as:

S�ðq;wÞ ¼ ð�1Þlþk
cos kw

XQ
q¼1

UqsqðqÞ; 0 � q � qa

[2]

where l and k are two nonnegative integer parame-

ters (1) of the coils that we call the ‘‘order’’ and

‘‘degree’’ of the coils, respectively. However, in

the following analyses, we will find that they are

related to the order and degree of the harmonic

fields generated by the coils. The sign ‘‘6’’

denotes the top and bottom plane, respectively, and

the basis functions sqðqÞ can be set arbitrarily as

the simple trigonometric function sqðqÞ ¼ sin qpq
qa
.

The components of the surface current can be

written as

Figure 1 Schematic diagram showing the spherical polar

coordinate systems for describing the bi-planar current

and the field it produces.
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J�w ¼ ð�1Þlþk
cos kw

PQ
q¼1

Uqjw;qðqÞ

J�q ¼ ð�1Þlþk
sin kw

PQ
q¼1

Uqjq;qðqÞ

8>>><
>>>:

: [3]

where jw;qðqÞ; jq;qðqÞ satisfy:

jw;qðqÞ ¼ � @sqðqÞ
@q

; jq;qðqÞ ¼ � k

q
sqðqÞ: [4]

Uqs in Eq. [3] are the Fourier coefficients for the

unknown surface current, and the number of terms

Q in the series expansion of the current should be

chosen large enough to satisfy the required accuracy.

In general, the surface currents on the top and bottom

planes have the same distribution but not necessarily

the same direction of flow. When l 1 k is even (odd),

the magnetic field Bz has even (odd) symmetry

with respect to the z 5 0 plane and the current direc-

tions on the pair of planes of the coil are the same

(opposite).

Now turning to the magnetic field that the surface

current generates, following the analysis of Romeo

and Hoult (1) over a spherical region with radius

r < fmin ¼ a, the Green’s function 1
j~r�~r0j can be

expressed as

1

j~r �~r0j ¼
1

f

X‘
n¼0

Xn
m¼0

em
ðn� mÞ!
ðnþ mÞ!PnmðcosaÞ r

f

� �n

3Pnmðcos uÞ cos½mð/� wÞ�; em ¼ 1 m ¼ 0

2 m 6¼ 0

�
; ½5�

where Pnm(x) is associated Legendre function. If

m 5 0, i.e., Pn0 ¼ Pn, (n 5 1, 2,. . .), they are the

Legendre functions that possess cylindrical symme-

try. According to the Biot-Savart law (13) and con-

sidering ~r�~r0
j~r�~r0 j3 ¼ �r 1

j~r�~r0 j, the magnetic field gener-

ated by the surface current is

d~B ¼ l0
4p

r 1

j~r �~r0j3
~J dr0; [6]

where the constant l0 is the magnetic permeability

of free space, and dr0 ¼ qdqdw. As is usual for

MRI applications, we consider only the z compo-

nent of d~B. If we let ~A ¼ r 1
j~r�~r0 j, because

rU ¼ @U
@r êr þ 1

r
@U
@u êu þ 1

r sin u
@U
@/ ê/, and r 1

j~r�~r0j ¼�r0 1
j~r�~r0j , the z component of d~B is

dBz ¼ l0
4p

dr0ðAxJy � AyJxÞ

¼ l0
4p

dr0½ðAf sina coswþ Aa cosa cosw

� Aw sinwÞðJw coswþ Jq sinwÞ
� ðAf sina sinwþ Aa cosa sinwþ Aw coswÞ
3 ð�Jw sinwþ Jq coswÞ�

¼ l0
4p

dr0ðAf Jw sinaþ AaJw cosa� AwJqÞ

¼ l0
4p

dr0X‘
n¼0

Xn
m¼0

em
ðn� mÞ!
ðnþ mÞ!

rn

f nþ2

3Pnmðcos uÞ½ðnþ 1ÞJw sinaPnmðcosaÞ

3 cosmð/� wÞ � Jw cosa
@PnmðcosaÞ

@a

3 cosmð/� wÞ þ mJq
PnmðcosaÞ

sina
3 sinmð/� wÞ�: ð7Þ

Differentiation of Ferrer’s-associated Legendre

polynomials is described on page 334 of (14):

dPnmðcosaÞ
da

¼ 1

sina
½ðn� mþ 1ÞPnþ1;mðcosaÞ

� ðnþ 1Þ cosaPnmðcosaÞ�: [8]

By Inserting Eq. [8] into [7], implementing some

algebra operations, and letting

ðn� mÞ!
ðnþ mÞ!

1

f nþ 2
¼ Cnm; m

PnmðcosaÞ
sina

¼ Cq
nm

1

sina
½ðnþ 1ÞPnmðcosaÞ � ðn� mþ 1Þ cosa Pnþ1;mðcosaÞ� ¼ Cw

nm

8>><
>>: [9]
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we recast Eq. [7] as

dBz ¼ l0
4p

dr0X‘
n¼0

Xn
m¼0

emCnmr
n Pnmðcos uÞ

3½Cw
nmJw cosmð/� wÞ þ Cq

nmJq sinmð/� wÞ�

¼ l0
4p

dr0X‘
n¼0

Xn
m¼0

emCnmr
nPnmðcos uÞ

3½cosm/ðCw
nmJw cosmw� Cq

nmJq sinmwÞ
þ sinm/ðCw

nmJw sinmwþ Cq
nmJq cosmwÞ� ½10�

By surveying carefully the content in square

brackets in Eq. [10], one sees that they have the form

of a scalar product of two vectors. Hence, we can

introduce a two-dimensional row vector:

D0
nm ¼ l0

4p
dr0emCnmðCw

nmJw cosmw� Cq
nmJq sinmw;

Cw
nmJw sinmwþ Cq

nmJq cosmwÞ; ½11�
thus, Eq. [10] can be simplified as

dBz ¼
X‘
n¼0

Xn
m¼0

D0
nmr

nPnmðcos uÞ cosm/
sinm/

� �
: [12]

We should point out that the bi-planar surface cur-

rents Jw,Jq in Eq. [11] include J�w ; J
�
q , respectively.

Substituting the expression (11) into Eq. [12] and

integrating it, gives

Bz ¼
X‘
n¼0

Xn
m¼0

Dnmr
nPnmðcos uÞ cosm/

sinm/

� �
: [13]

Here the harmonic coefficients are

Dnm ¼ l0
4p

Zqa
0

Z2p
0

q dw dq emCnm

Cwþ
nm J

þ
w þ Cw�

nm J
�
w

� �
cosmw� Cqþ

nm;J
þ
q þ Cq�

nmJ
�
q

� �
sinmw

Cwþ
nm J

þ
w þ Cw�

nm J
�
w

� �
sinmwþ Cqþ

nmJ
þ
q þ Cq�

nmJ
�
q

� �
cosmw

0
@

1
A

T

;

where the superscript T denotes transpose. Substitut-

ing Eq. [3] into the above equation, we obtain

Dnm ¼ l0
4p

XQ
q¼1

Uq

Zqa
0

Z2p
0

q dw dq emCnm

3
Cwþ
nm þ �1ð ÞlþkCw�

nm

h i
jw;q cos kw cosmw� Cqþ

nm þ �1ð ÞlþkCq�
nm

h i
jq;q sin kw sinmw

Cwþ
nm þ �1ð ÞlþkCw�

nm

h i
jw;q cos kw sinmwþ Cqþ

nm þ �1ð ÞlþkCq�
nm

h i
jq;q sin kw cosmw

0
B@

1
CA

T

: ½14�

According to the parity of associated Legendre

function: Pnm � cosað Þ ¼ �1ð ÞnþmPnm cosað Þ [refer

to page 333 of (14)], and the orthogonality of trigo-

nometric functions:R 2p
0

sin kw sinmw dw ¼ em � 1ð ÞpdkmR 2p
0

cos kw cosmw dw ¼ 2pdkm=emR 2p
0

sin kw cosmw dw ¼ 0;

8><
>: [15]

Equation (13) is reduced to

Dnm ¼ l0
2

Zqa
0

q dqCnm

XQ
q¼1

Uq

3
1þ �1ð Þnþmþlþk
h i

dk;m Cw
nmjw;q � Cq

nmjq;q
� �

0

 !
:

[16]

For an l-th order and k-th degree shim coil, only a

special order and degree of harmonic magnetic field,

Tnm ¼ rnPnm cos uð Þ cosm/; [17]

can be generated. In Eq. [17] the m and n satisfy

m ¼ k
n ¼ k þ lþ kð Þmod 2þ 2 i� 1ð Þ; i ¼ 1; 2; � � �ð Þ:

�
[18]

It is assumed here that the harmonic fields exhibit

either even or odd symmetry with respect to the

z 5 0 plane. This is justified by the fact that the fields

will be chosen to have forms given by spherical

harmonics. Thus, the coefficients in Eq. [16] are sim-

plified as
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D ið Þ ¼ l0

Zqa
0

q dqCnk

XQ
q¼1

Uq Cw
nkjw;q � Cq

nkjq;q

� �
;

[19]

Picking up the current coefficients Uq and apply-

ing Eq. [4], we can obtain a coefficient matrix whose

elements are

D i; qð Þ ¼ l0

Zqa
0

q dqCnk Cq
nk

k

q
sq qð Þ � Cw

nk

@sq qð Þ
@q

� �
:

[20]

Consequently, for the coil of the l-th order and

k-th degree, the final magnetic field is expanded as

Bz ¼
X‘
n¼1

XQ
q¼1

UqD i; qð ÞrnPnk cos uð Þ cos k/: [21]

To find the Fourier coefficients

U ¼ U1;U2; � � � ;UQ

� �T
of the unknown surface cur-

rent, we set a column vector of target harmonic coef-

ficients,

A ¼ A1 A2 � � � ANð ÞT : [22]

Here the integer N satisfies the condition Q �
N � l� kð Þ=2þ 1, and the i-th element is

Ai ¼ dl;nbnm ¼ dl;kþ lþkð Þmod2þ2 i�1ð Þbnm; [23]

where bnm is the target harmonic coefficient of the

n-th order and m-th degree. When n 5 1 this

defines a linear gradient suitable for both encoding

and shimming; when n � 2 this defines a higher-

order coefficient useful for shimming only. Finally,

we obtain a matrix equation

DU ¼ A; [24]

thus, U can be obtained as

U ¼ D�1A: [25]

As a result, the Fourier coefficients of the

unknown surface current for an assigned harmonic

can be found. Once the coefficients Uq are found, the

stream functions on the coil planes can be calculated

from Eq. [2]. The surface current as well as the coil

winding patterns on the coil planes are now immedi-

ately available from Eq. [1], simply in the form of

contours, drawn as the stream function with equally

spaced intervals (15).

METHODS

Numerical simulation was carried out in Matlab (The

Mathworks, Natick, MD). The spherical harmonics

Figure 2 The winding pattern of the T20 shim coil (a),

and the magnetic field it generates along the x-axis (b)

and z-axis (c).
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were divided into two subsets: zonal (m 5 0) and

tesseral (m = 0) harmonics. To illustrate how to set

a target harmonic field coefficient vector A, we will

discuss a few typical cases as follows.

Case 1

For a linear z-gradient coil with target gradient

strength Gz, the target field is written as

Bz ¼ Gzr P10 cos uð Þ, with n 5 1 and m 5 0. Thus,

the order of the z-gradient coil should be set as l 5 1

and the degree k 5 0. From Eq. [18],

n ¼ 1þ 2 i� 1ð Þ; i ¼ 1; 2; 3; � � �. This type of coil

includes not only zonal harmonic T10, but also T30,
T50,. . ., in which the harmonic coefficients are

A1,A2,A3,. . ., respectively. Therefore, to design a T10
shim coil with target coefficient Gz, we should set

A1 5 Gz and the other harmonic coefficients as

A2 5 A3 5 ��� AN 5 0. In summary, the target

harmonic field coefficient vector should be set as

Figure 3 The winding pattern of the T21 shim coil (a),

and the magnetic field it generates along the x-axis (b)

and z-axis (c).

Figure 4 The winding pattern of the T22 shim coil (a),

and the magnetic field it generates along the x-axis (b)

and z-axis (c).
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A 5 (Gz 0 . . . 0)T, where we use Gz to indicate the

linear z-gradient strength b10.

Case 2

For a quadratic order zonal harmonic field

Bzð Þ205 b20r
2 P20 cos uð Þ with n 5 2 and m 5 0, the

order of the harmonic coil should be set as l 5 2 and

the degree k 5 0. As required by Eq. [18], n 5 0,2,4,���. This type of coil can generate zonal harmonics of

T00, T20, T40,. . ., in which the harmonic coefficients

are A1, A2, A3,. . ., respectively. Correspondingly we

set the target harmonic field coefficient vector as A =

(0 b20 0 ��� 0)T.
Case 3

For cubic order tesseral harmonic field Bzð Þ32 ¼
b32r

3 P32 cos uð Þ cos 2/ with n 5 3 and m 5 2. The

order of the shim coils should be set as l 5 3

and the degree k 5 2. Based on Eq. [18],

n ¼ 3þ 2 i� 1ð Þ; i ¼ 1; 2; 3; � � � we can set n 5
3,5,7,���. This type of coil can generate harmonics

T32,T52,T72,. . .. To design T32 shim coil, we should

set the target harmonic field coefficient vector as

A ¼ b32 0 0 � � � 0ð ÞT .
Over all, any pure zonal shim coil and one-half of

all possible tesseral shim coils can be directly designed

using this novel method. The other half of tesseral

shim coils can be obtained by rotating their counter-

parts with a proper angle (to be discussed later). There-

fore, as long as the geometry parameters for the bi-pla-

nar shim coil corresponding to the nth order the kth

degree harmonic bnk are given, we can compute the

surface current coefficients Uq of the lth order the kth

degree harmonic coil through Eq. [25]. Once the coef-

ficients Uq have been determined, the stream function

S� q;wð Þ in Eq. [2] will be determined. Finally, the

Figure 5 The winding pattern of the T32 shim coil (a), and the magnetic field it generates

along the x-axis (b), y-axis (c), and z-axis (d).
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winding patterns of the coils can be directly obtained

by contouring the stream function.

RESULTS

Figures 2(a)–6(a) show the coil winding patterns

obtained with this novel method for the harmonics

T20, T21, T22, T32, and T33, respectively. In these

examples, the coils are located at z 5 6a, a 5 0.2

m, and their maximum radius is qa 5 0.40 m.

The target field is located over a 0.3 m DSV. In all

figures, the dashed versus solid lines in the winding

patterns indicate counter-flowing currents. The

Bz-field produced by these coils, as a function of

(x, z), (x, y), or (x, y, z), are shown in (b) and (c) or

(b), (c) and (d) of Fig. 2–6, respectively. These spheri-

cal harmonics are evaluated at the target region over a

0.3 m DSV. The fields generated by the discrete cur-

rents (thin solid curves) show mostly excellent agree-

ment with the ideal harmonic fields (thick dashed

curves). There are some noticeable deviations, how-

ever, near the imaging- region boundaries (vertical

dashed lines), which are caused either by discretization

of the surface current or by not using large enough

Q values in Eqs. [2], [3], [19], and [21] (to be dis-

cussed later). Typical design parameters for the afore-

mentioned shim coils, including the condition number

of the matrix D in Eq. [24] are listed in Table 1.

These results illustrate that the novel method pre-

sented here for designing shim coils allows decomposi-

tion of field harmonics into Fourier coefficients. To

design a bi-planar shim coil with a finite radius, given

any Fourier coefficient bnk, the pure harmonic coil corre-

sponding to the bnk could be obtained easily and effi-

ciently. We now address the following question: Since

there are only harmonics associated with terms of

cos k/ in Eqs. [17] and (21), unlike Eq. [13], how

can one design coils that generate harmonics associ-

ated with terms of sin k/? To achieve this, we use

Tnk and T
0
nk to represent shim coils associated with

terms of cos k/ and sin k/, respectively. Because

sin k/ ¼ cos k /� p
2k

� �� 	
, T

0
nk shim coils can be

designed directly by rotating Tnk shim coils by 908/
k. A T

0
21 shim coil that generates the harmonic

b21r
2P21 cos uð Þ sin/ can be obtained by a 90-

degrees rotation of the T21 shim coils that generate

b21r
2P21 cos uð Þ cos/ field. In the same way, a T

0
31

shim coil can be obtained by rotating the T31 shim

coil through 90 degrees; by rotating 45 degrees, T22
and T32 shim coils could be transformed into T

0
22

and T
0
32 shim coils, respectively; a 30-degrees rota-

tion will transform a T33 shim coil into a T
0
33 coil.

In other words, the other half of the tesseral har-

monics coils, which are not covered by the afore-

mentioned equations, can be obtained simply from

rotating their counterparts.

DISCUSSION

Ill conditioning of the governing matrices is an

unavoidable problem in most target-field methods for

Figure 6 The winding pattern of the T33 shim coil (a),

and the magnetic field it generates along the x-axis (b)

and y-axis (c).
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coil design (7, 9). Later we discuss how to scale

well-conditioned and ill-conditioned systems of

equations, how the conditioning of the governing

matrices affects the design, and what are the advan-

tages of our method in this regard.

Consider Eq. [24] as a governing matrix equation

for the general target-field method. The vector A is

formed from the coefficients that represent the target

magnetic field; the vector U constitutes the unknown

coefficients that determine the current distributions

on the coil planes; and D is the matrix that describes

the relationship between the field and source. The

relationship between the relative change in the solu-

tion vector U to the change in the vector A is given

by [see page 458 of (16)]:

DUk k
U þ DUk k � Dk k D�1



 

 DAk k
Ak k ; [26]

where Dk k is the norm of the matrix D. One of the

popular definitions of the norm is the uniform-

matrix norm (17), which for an m 3 n matrix D is

defined as

Dk k‘ ¼ max
1<i<m

Xn
j¼1

dij
�� ��: [27]

The relative error of vector A will be amplified by

as much as cond Dð Þ ¼ Dk k D�1


 

, which is called

the condition number of the matrix D. It is a scale for
ill or well conditioning of the matrix equation. From

this the maximum relative error of the solution can

be described as cond Dð Þ3emach, where emach repre-

sents the machine epsilon, which on a 32-bit PC has

the value emach ¼ 21�32 ¼ 5310�10. As a result, if

the condition number of the governing matrix in a

coil design is large compared to 1/emach, the design

result may not be trustworthy. The two ways to deal

with this case are to use a higher-precision com-

puter for the calculation or to solve the equation

with other mathematical methods, such as Tikhonov

regularization method (9, 10).
One merit of the novel method presented here is

that the condition number of the governing matrix is

much smaller than other target-field methods. For

instance, the condition numbers of matrices in

designing a T20 shim coil with the same geometrical

condition, using the new method and comparing to

our previous work (12), are 30 (in Tables 1 and 2)

and 1 3 1011, respectively. The relative errors of the

solutions on a 32-bit PC are 2 3 1028 and 50,

respectively. As a result, we can trust the design

result of the novel method, but cannot rely on the

second method unless reprocessing the calculation on

a higher-precision computer or utilizing other mathe-

matical methods. In fact our previous target-field

method (12) is only suitable for designing gradient

coils and not shim coils, which is why we developed

this new approach.

We now discuss the design accuracy, coil effi-

ciency, and computation time. With a larger Q, the
coil can produce a shimming field more exactly equal

to the ideal harmonic field. Nevertheless, the increase

in Q also leads to more frequent mathematical oscil-

lation of the computed surface current. The counter-

action of the field caused by the frequently reversed

current reduces the efficiency of the coils and

Table 1 Parameters of the Shim Coils Designed Here, Including the Condition Number of the
Matrix D in Eq. [24]

Coil Type T20 T21 T22 T32 T33

Optimal Q 5 3 4 3 5

Condition number 30 20 30 20 100

Shimming efficiencya 4.32 G/m2/A 3.82 G/m2/A 0.56 G/m2/A 2.86 G/m3/A 0.18 G/m3/A

Computation time (s) 9.4 1.5 3.3 1.5 7.5

aEfficiencies are given in units of gauss.

Table 2 Comparison of Condition Number and Relative Error for Some Typical Coils

Novel Method Previous Method (12)

Coil type T10 T11 T20 T10 T11 T20
Condition number 40 80 30 3 3 103 6 3 103 1 3 1011

Relative error 2 3 1028 4 3 1028 2 3 1028 2 3 1026 3 3 1026 50
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increases difficulty in their manufacture. Therefore, a

compromise must be made between accuracy and ef-

ficiency. We found that when the series-expansion of

the current is limited to Q < 6 terms, the approxi-

mate surface current obtained through matrix inver-

sion meets the target field with reasonable accuracy.

The coils designed here had little current oscillation

and higher power efficiency with the optimal Q in

Eqs. [2], [3], and [21]. In this work, neither Q (less

than 6) nor N is large, which results in small-scale

coefficient matrices and timesaving calculations. For

example, when designing a T20 shim coil using the

novel method with Q 5 5 and cond (D) 5 30, the

computation time was 9.4 s on a PC with an Intel

E8200 processor and 4 GB of memory. The computa-

tion times for the typical Tnm shim coils are listed in

Table 1, along with their efficiencies. The coil effi-

ciency is defined as bnm/I0, where bnm is the harmonic

coefficient of order n and degree m, and I0 is the cur-
rent flowing in the coil.

CONCLUSIONS

A novel analytical design methodology was devel-

oped by combining classical harmonic and popular

target-field approaches. A matrix equation linking

the field harmonics expressed by Fourier coefficients

bnk and the unknown surface current expressed by a

Fourier series with weighting coefficients Uq has

been established. The novel method describes the tar-

get field by giving the harmonic coefficients, instead

of locating target-field points and specifying target-

field values. Because this method does not require

setting the target-field points, the governing matrix

equation is better conditioned and more suitable for

numerical solution.

Unlike with previous methods (12), it is feasible

using this novel approach to design winding patterns

for bi-planar shim coils. All bi-planar shim coils,

including gradient coils for permanent-magnet MRI

scanners, can be designed by the procedures estab-

lished in this article. Each design result has been

validated through the Biot-Savart law, i.e., by insert-

ing the discrete current distribution obtained from the

design procedure into the Biot-Savart formula to cal-

culate the magnetic field that it generates. There is

little deviation between the resulting field and the tar-

get field, which shows that the design method is

effective and efficient. The new feature of this tech-

nique is that the specification of the target field is

integrated more closely into the technique.
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